

Advanced Grid Widgets Extension
Version 4.2.0

January 31, 2019

Copyright © 2019 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively "PTC") are subject to
the copyright laws of the United States and other countries and are provided under a license agreement that restricts copying,
disclosure, and use of such documentation. PTC hereby grants to the licensed software user the right to make copies in printed form
of this documentation if provided on software media, but only for internal/personal use and in accordance with the license
agreement under which the applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent of PTC. This
documentation may not be disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or
made publicly available by any means without the prior written consent of PTC and no authorization is granted to make copies for
such purposes. Information described herein is furnished for general information only, is subject to change without notice, and
should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade secrets and
proprietary information, and is protected by the copyright laws of the United States and other countries. It may not be copied or
distributed in any form or medium, disclosed to third parties, or used in any manner not provided for in the software licenses
agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL
PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the piracy of PTC software
products, and we pursue (both civilly and criminally) those who do so using all legal means available, including public and private
surveillance resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and transmit data on
users of illegal copies of our software. This data collection is not performed on users of legally licensed software from PTC and its
authorized distributors. If you are using an illegal copy of our software and do not consent to the collection and transmission of such
data (including to the United States), cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright notice, of your PTC
software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.R. 2.101. Pursuant to
Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014) for civilian agencies or the Defense Federal
Acquisition Regulation Supplement (DFARS) at 227.7202-1(a) (Policy) and 227.7202-3 (a) (Rights in commercial computer software
or commercial computer software documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use, duplication or disclosure
by the U.S. Government is subject solely to the terms and conditions set forth in the applicable PTC software license agreement.

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Advanced Grid Widgets Extension

 1

Contents
Document Revision History ... 3

Software Change Log .. 3

Prerequisites ... 5

Introduction .. 6

How are the Advanced Grid and Advanced Tree Grid Widgets Different from the Standard Grid? 6

Key Features in Both Advanced Grids ... 6

Features Unique to the Tree Grid ... 7

Features of the Standard Grid Not Currently Available in Advanced Grids .. 7

Installing the Widgets ... 8

Building an Advanced or Tree Grids .. 9

Properties .. 11

Footer Section in Both Advanced Grids .. 29

Functions that can be Included in the Footer Infotable: .. 32

Column Configuration from the Context Menu .. 34

Accessing Parameters on the Context Menu .. 34

Cell Editing .. 36

Saving Edits ... 37

Adding and Deleting Rows .. 37

Cell Validation ... 39

Apply Style Theme .. 42

Column Renderers and Formats ... 48

Working with a Configuration Service .. 50

Writing a Configuration Service Script .. 50

Configuration Service Parameters .. 51

Working with Tree Grid Data .. 52

Using a Tree-Loading Data Service.. 52

Tree Grid Performance Guidelines ... 53

Row Selection of Dynamically-Loaded Rows .. 54

Sorting, Searching, and Filtering in Advanced Grid and Tree Grid ... 56

Implement Sorting .. 56

Implement Searching .. 57

Implement Filtering... 57

Advanced Grid Widgets Extension

 2

Samples File .. 59

Using the Advanced and Tree Grids in Run Time .. 59

Release Notes for Advanced Grids .. 61

Enhancements .. 61

Fixed Issues ... 61

Known Issues ... 61

Advanced Grid Widgets Extension

 3

Document Revision History
Revision Date Description of Change
March 22, 2017 Initial version of document.
April 13, 2017 Fixed incorrect links to specific sections of the document.

Added detail to the Samples File section.
May 17, 2017 Updated to include 2.0 functionality and bug fixes.
June 2, 2017 Updated to include know issues.
July 31, 2017 Updated Release Notes section and added more information about the

available column renderers.
October 4, 2017 Updated to include 3.0 functionality and bug fixes.
October 13, 2017 Updated to include 3.0.2 functionality and bug fixes.
October 31, 2017 Updated to include new Location column renderer and 3.0.3 bug fixes.
November 20, 2017 Updated to include 3.0.4 functionality and bug fixes.
December 5, 2017 Updated the Prerequisites to require at least ThingWorx 7.4
January 5, 2018 Updated to include the 3.0.5 functionality.

1. Revised the Prerequisites table.
2. Removed the example entities from the document.
3. Revised the Sample File section.
4. Revised the bug fixes section.
5. Revised the MinRowHeight Property Description.
6. Revised the Cell Editing Options section.

March 2, 2018 Updated to include 3.0.6 functionality and bug fixes.
June 06, 2018 Updated to include 4.0.0 functionality and bug fixes.
July 06, 2018 Updated to include 4.0.1 bug fixes.
August 31, 2018 Updated to include 4.0.2 bug fix.
November 14, 2018 Updated to include 4.1.0 new features and bug fixes.
November 16, 2018 Updated to include 4.1.1 bug fix.
January 31, 2019 Updated to include 4.2.0 new features and bug fixes.

Software Change Log
Version Release Date Changes
1.0 - Beta release.
1.1 March 22, 2017 General release.
2.0 May 17, 2017 General release.
2.1 July 31, 2017 General release.
3.0 September 29, 2017 General release.
3.0.5 January 5, 2018 General release.
3.0.6 March 2, 2018 General release.
4.0.0 June 06, 2018 General release
4.0.1 July 06, 2018 General release
4.0.2 August 31, 2018 General release
4.1.0 November 14, 2018 General release
4.1.1 November 16, 2018 General release
4.2.0 January 31, 2019 General release

Advanced Grid Widgets Extension

 4

Advanced Grid Widgets Extension

 5

Prerequisites
Prerequisites
ThingWorx 8.2.x, 8.3.x or higher

Advanced Grid Widgets Extension

 6

Introduction
The Advanced Grid Extension includes two widgets: Advanced Grid and Advanced Tree Grid.

Both widgets provide flexible, interactive ways to display data in grid views. Each widget supports
numerous ways to render column data and allows on-the-fly configuration of the data display.

How are the Advanced Grid and Advanced Tree Grid Widgets Different from the Standard
Grid?

Both advanced grid widgets provide options to allow fully dynamic grid configuration. When a grid is
configured dynamically, via a ThingWorx service, the grid can be built without dependence on a Data
Shape. Both grid widgets also include an enhanced user experience that makes grid data easier to work
with, both in Design Time and in Run Time environments.

In addition, the Advanced Tree Grid is designed to handle hierarchical data and can provide expandable
nodes that display parent and child data relationships in a tree structure.

NOTE: The Advanced Grid and the Advanced Tree Grid widgets are not backwards compatible with the
standard grid widget. These advanced grids are alternatives to the standard grid. They include many
new advanced features but are not a one-to-one replacement of every feature available in the standard
grid (see below for details). There is no upgrade path from the standard grid to one of the advanced
grids.

The following subsections list the key features that are provided in both advanced grids, features that
are unique to the advanced tree grid, and features that were available in the standard grid that are not
currently included in the advanced grids.

Key Features in Both Advanced Grids

• Options for building grids using either a static or a dynamic configuration:

o Static – Use the properties available in the Mashup Builder to configure the grid.

o Dynamic – Bind the grid to a configuration service that returns a JSON object with the
configuration parameters.

• Enhancements related to dynamic grid configuration:

o Not limited by dependence on an underlying Data Shape because grid configuration
parameters are passed in dynamically from a configuration service

o More control over certain style properties, such as font settings

• Changes to grid configuration in both Mashup Builder and with a service:

o Real-time data updates in Design View (design changes reflected on-the-fly in the data)

o Subset of most useful column renderers available, including Boolean, Datetime, Html,
Hyperlink, Imagelink, Integer, Location, Long, Number, and String

Advanced Grid Widgets Extension

 7

o Sorting on multiple columns

o Multiple-row selection options

o Grid Reset button

o Global grid Search field

o Auto-width column sizing and fixed-width column sizing (in pixels or percentages)

o Header and cell text alignment

o Toolbar and Tooltip styling options

o Overflow options and tooltip support for header and data cells

• Data Filter widget enhancements:

o Live data filtering on all data types – data in the grid updates to reflect filtering

o OR queries (in addition to the standard AND queries)

o Data filtering can be combined with search and sort parameters

• Context menu in Run Time where columns can be hidden or unhidden from the column headers

• Server-side sorting and search functionality that will sort or search on all data rather than just
the data currently loaded in the grid

• Per user/per grid cookie to persist display settings such as hidden columns, column order across
the grid, column size, column sort order (ordering of rows), and row expansion in tree grids.

• Support for rendering images in a grid cell.

• Localization Support for column headers in both JSON and Mashup Builder properties (Depends
on specific ThingWorx point releases. See Prerequisites.

• Addition of a footer section in a grid.

Features Unique to the Tree Grid

• Expandable nodes for viewing multiple levels of parent/child data

• Separate options to preload initial data and dynamically load child data

• Javascript tree-loading data service that provides search and filter functionality for parent and
child data once the source of the data is defined

• Auto-expanding rows as defined from a service by specifying the ID of any row to be expanded

Features of the Standard Grid Not Currently Available in Advanced Grids

• Scroll to the top

• Cell editing

Advanced Grid Widgets Extension

 8

Cell editing is available for all column formats currently supported in the Advanced Grid. You can
also edit Boolean checkboxes at runtime.

• Cell validation

Cell validation includes validation expressions and validation messages. Invalid values for a
specific column type are not accepted by a grid; therefore, the existing valid value is kept.

• Support for all column renderers

The set of renderers currently supported in the advanced grids is limited to the following:
STRING, NUMBER, LONG, LOCATION, BOOLEAN, HTML, HYPERLINK, IMAGELINK, and DEFAULT

Installing the Widgets
1. From a Web browser, launch ThingWorx.
2. Log into ThingWorx as an administrator.
3. Go to Import/Export > Import.

4. Click Choose File and select the grid-

advanced_ExtensionPackage.zip from
wherever you have saved it.

5. Click Import.

NOTE: If an Import Successful message
does not display, contact your ThingWorx
System Administrator.

6. Click Yes to refresh Composer after

importing the extension.

Advanced Grid Widgets Extension

 9

Building an Advanced or Tree Grids
As with any data-rendering widget in ThingWorx Composer, a grid widget must be placed in a mashup
and configured with incoming data bindings. To build an Advanced Grid or an Advanced Tree Grid, do
the following:

1. Drag and drop one of the following widgets onto a mashup:

• Grid-Advanced

• Tree-Grid-Advanced

2. On the right, add a data source entity and, from the Returned Data, drag All Data to the grid
and bind it to the Data property. This binding defines where the data is loaded from, when the
grid is launched.

Tree Grid: If you are building a Tree Grid, you can also bind a source for the child data. From
Returned Data, either in the same data source entity or from a different source,
drag All Data to the Child Data property on the grid. This binding defines where
child data comes from when subsequent nodes are expanded and the child data is
loaded dynamically.

 NOTE: Binding child data in a tree grid requires a specific kind of data service that
provides the code necessary to properly sort, search, filter, and expand nodes. For
more information, see Using a Tree-Loading Data Service.

3. Define the grid configuration parameters using one of the following methods:

• Static Configuration – Use the list of properties available in the Mashup Builder to
configure grid parameters. The available properties are listed in the left-side panel of
the Design view. For information, see Properties below.

• Dynamic Configuration – Write a configuration service that outputs a JSON object and
bind it to the grid. For information and a sample script, see Working with a
Configuration Service.

NOTE: If the data source is tied to a Data Shape, you can also configure some grid parameters
from the context menu available in the top left corner of the widget in Design view. For more
information, see Column Configuration from the Context Menu.

Advanced Grid Widgets Extension

 10

4. Save and View the completed mashup.

Advanced Grid Widgets Extension

 11

Properties
The advanced and tree grid properties available in the Mashup Builder Design view can vary depending on whether you are configuring the grid
via the Mashup Builder (static configuration) or via a service (dynamic configuration). The chart below lists all the properties available when
configuring the grid from the Mashup Builder.

Properties that are only configurable from the Mashup Builder, and not via dynamic configuration, are marked with an asterisk * in the chart.

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

Id* A unique identifier used internally by
ThingWorx.

INTEGER Gridadvanced-<id> or

Treegridadvanced-<id>

N Both

Type* The widget type. n/a Grid-Advanced or

Tree-Grid-Advanced

N Both

DisplayName* A user-defined name to identify the grid
when displayed.

STRING gridadvanced-n or

treegridadvanced-n

N Both

Description* A user-defined description. STRING n/a N Both

Data* Source of data that loads when the grid is
launched.

If the grid is bound to a data source, a
filled arrow is displayed:

If there is no data source, the arrow is
unfilled:

INFOTABLE n/a Y Both

ChildData* Source of child data that loads
dynamically when nodes are expanded.

If the grid is bound to a child data source,
a filled arrow is displayed:

If there is no child data source, the arrow
is unfilled:

INFOTABLE n/a Y TreeGrid only

Advanced Grid Widgets Extension

 12

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

ParentIDFieldName Identifies the parent ID Field Name. This
property is required to create the
hierarchical tree structure.

IMPORTANT: For the top-level row that
does not have a parent, the value should
be a forward slash (/).

STRING parentId N TreeGrid only

IDFieldName The primary key column for the grid. The
values in this column act as unique
identifiers for each row of data. This
property is optional for the advanced grid
but required for the tree grid.

When no field is specified, or if the
specified field does not exist, the grid
creates its own internal row ID.

STRING id N Both

IDPathSeparator Enables configuring the path separator
character.

The path separator character is used in
Tree Grid for selections of rows that are
dynamically loaded by the grid but have
not yet been loaded on the client side.
See section Row Selection of Dynamically
Loaded Rows .

STRING :; N TreeGrid only

HasChildrenFieldName Specifies the name of the column that
indicates whether a row has child data
available.

To indicate that the row does NOT have
children, enter one of the following: ‘0’,
0, ‘false’, false, empty string, or
undefined.

STRING hasChildren N TreeGrid only

Advanced Grid Widgets Extension

 13

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

Any other value means that the row does
have children.

Configuration* If the grid is bound to a configuration
service, a filled arrow is displayed:

If there is no configuration service, the
arrow is unfilled:

NOTE: An Add button is available for the
Configuration property from 4.2.0
version of Grid, that enables you to enter
a JSON in the pop-up page. The Add
button becomes Edit when you enter the
JSON, click Done, and go back to the
property panel.

STRING n/a Y Both

IsEditable Determines whether or not the values in
grid cells can be edited when the grid is
displayed in run time.

NOTE: To edit values in a specific column,
the column must also be configured as
editable. See the Cell Editing Options on
the Column Configuration menu.

BOOLEAN False N Both

EnableEditButtons Enables the Edit, Save, and Cancel
buttons in the grid tool bar to allow for
manual saving of edits.

If you want changes to be saved
automatically, enable the IsEditable
property described above. If you want to
allow for changes to be saved manually,
enable this EnableEditButtons property.

BOOLEAN False N Both

Advanced Grid Widgets Extension

 14

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

See the Cell Editing for more information.

When you enable this property,
EnableAddDeleteButtons property
appears in the mashup properties panel.

EnableAddDeleteButto
ns

If you set this property to True, the Add
and Delete buttons appear in the grid
tool bar that enables you to add or delete
rows in the grid.

Note: Click the Edit button at run time to
view either the Add or Delete buttons in
the tool bar.

BOOLEAN False N Advanced Grid
only

EditedTable A bindable property that specifies an
output location for updated values when
cells are edited at run time. This property
must be bound to an infotable update
service to save the updated values. For
example, bind to
AddOrUpdateDataTableEntries service
on a DataTable thing.

NOTE: Before EditedTable property can
be used, the IsEditable property must be
enabled. In addition, specific columns
must be configured as editable. See the
Cell Editing Options on the Column
Configuration menu.

INFOTABLE n/a Y Both

DeletedTable This property specifies an output location
for rows that are deleted from a grid at
run time.

INFOTABLE n/a Y Advanced Grid
only

Advanced Grid Widgets Extension

 15

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

This property must be bound to an
infotable update service to save the
updated values. For example, bind the
property to the
AddOrUpdateDataTableEntries service
on a DataTable thing.

DefaultSelectedRows Defines which row numbers are
highlighted by default when the grid is
displayed. Values can include comma-
separated numbers and ranges.

Example: 1,2,4-5

The property can also be defined by a
bound service. If service is bound, a filled
arrow is displayed:

If there is no service, the arrow is
unfilled:

NOTES: This property will have no effect
if the RowSelection property is set to
none. In order to select multiple rows,
the RowSelection property must to be
set to multi.

In a tree grid, default row selection
depends on which rows are in view.
When the ExpandLoadedRows property
is enabled, all of the preloaded rows are
expanded and the default selection starts
at the top and counts down including
both parent and child rows. If the
preloaded rows are not expanded, the

STRING n/a Y Both

Advanced Grid Widgets Extension

 16

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

default selection starts at the top and
incudes only parent rows.

SelectedRows* Defines, via an INFOTABLE source, which
rows are highlighted by default when the
grid is displayed.

When used in a Tree grid, only the Row
ID column is required to make row
selections but other columns can be
included.

In an Advanced grid, row selections are
handled by binding the output of the
SelectedRows parameter in a service to
the input SelectedRows property on the
grid.

This property is bindable in either an
output or an input direction so that one
entity can control the selection of rows in
another. For example, one table can
control the selection of rows in a second
table, or a 3D image can be used to select
rows in a table.

For the controlling entity, bind the
service as an output INFOTABLE:

For the entity being controlled, bind the
service as an input INFOTABLE:

NOTE: This property will have no effect if
the RowSelection property is set to none.
In order to select multiple rows, the

INFOTABLE n/a Y Both

Advanced Grid Widgets Extension

 17

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

RowSelection property must to be set to
multi.

IncludeRowExpansionP
arents*

Determines whether or not parent rows
that are not included in preloaded client-
side data will be included when selecting
or expanding child rows. If True, the
parent rows will be fetched with the child
rows so the hierarchy can be recreated.

NOTE: Depending on the depth and size
of your data, using this property can
affect grid performance. See Tree Grid
Performance Guidelines.

BOOLEAN False N TreeGrid only

ExpandRows* IDs of any top-level or child rows in the
grid that should be expanded. Only the
Row ID column is required in order to
select rows for expansion.

INFOTABLE n/a Y TreeGrid only

ExpandLoadedRows* Enables auto-expanding of all preloaded
data when the grid is launched.

NOTES: Multiple levels of preloaded data
must be available.

When this property is enabled, it affects
the way rows are highlighted when
DefaultSelectedRows are defined.

This property must be turned off in order
for the PreserveRowExpansion property
to be effective when enabled.

BOOLEAN False Y TreeGrid only

ExpandRowOnDoubleCl
ick

Allows a row with children to be
expanded when double clicked. Rows can

BOOLEAN False N TreeGrid only

Advanced Grid Widgets Extension

 18

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

also be expanded by clicking on the node
icon itself.

In a JSON configuration service, the
property name is:
treeSettings.expandRowOnDoubleClick

PreserveRowExpansion Enables row expansion selections to be
preserved when the grid is refreshed.
When using this property, make sure the
maxLevels property in your tree-loading
data service is set to a value greater than
the level you want to expand to. For
more information about the data service,
see Using a Tree-Loading Data Service.

NOTES: If the ExpandLoadedRows
property is enabled, it will overwrite this
property and expand all of the preloaded
rows. If you want to preserve a specific
expansion of rows, turn off the
ExpandLoadedRows when you turn on
PreserveRowExpansion.

The CookiePersistence property must be
enabled in order to preserve row
expansion values.

BOOLEAN False N TreeGrid only

RowSelection Controls what row selection is possible to
configure. Options: none, single, or
multi.

NOTE: If the none option is selected,
other row selection properties will have
no effect.

STRING None N Grid only

Advanced Grid Widgets Extension

 19

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

NOTE: When you enable IsEditable or
EnableEditButtons properties,
RowSelection property will not take
effect in the grid. The user can select
rows when the grid is not in edit mode.

AutoScroll Controls whether or not the grid
automatically scrolls to selected rows
when the grid is resized or the service is
refreshed.

BOOLEAN False N Both

CookiePersistence* Enables client-side persistence for certain
column settings (order, size, visibility, and
sort order).

BOOLEAN True N Both

EnableContextMenu* Enables or disables the display of a grid
context menu, at run time, that allows an
end user to show or hide specific
columns. Works in conjunction with
CookiePersistence:

• If both properties are enabled – a user
can show/hide columns and those
selections persist.

• If EnableContextMenu is disabled and
CookiePersistence is enabled – a user
cannot show/hide columns but
previous selections will persist.

• If EnableContextMenu is enabled and
CookiePersistence is disabled – a user
can show/hide columns, but only for
the current request.

BOOLEAN True N Both

Advanced Grid Widgets Extension

 20

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

In a JSON configuration service, the
property can be set as a top-level
parameter as follows:
var config = {
“enableContextMenu”: false,
...
}

EnableSorting Must be enabled for any type of column
sorting to take place, including
ascending/descending toggling from
headers, the MultiColumnSortOrder
property, or binding a sorting service.
When this option is enabled, the
following properties become available in
the properties panel:

• QueryFilter – a bindable filter query for
use with a data service

• Filter – a bindable event property to
trigger a query data service

BOOLEAN False N Both

MultiColumnSortOrder Sets a default column sort order. Syntax:
column name:order,column name:order

Example: office:asc,title:des

Note: EnableSorting must be turned on
in order for MultiColumnSortOrder to
have any effect.

STRING n/a N Both

EnableGridSearch Allows placement of a toolbar with a
global Search box on the grid. When this
option is enabled, the following

BOOLEAN False N Both

Advanced Grid Widgets Extension

 21

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

properties become available in the
properties panel:

• QueryFilter – a bindable filter query for
use with a data service

• Filter – a bindable event property to
trigger a query data service

GridSearchLocation Defines where to place the Search box.
This option only becomes available when
the EnableGridSearch property is turned
on.

STRING n/a N Both

QueryFilter* A bindable query property used to bind a
query service as the input query
parameter to control sorting, searching,
and filtering of the data. This property
becomes available when either the
EnableSorting or EnableGridSearch
properties are turned on. It can be set
from the properties panel or from the
context menu on the grid itself.

If you are using a data filter widget in
your mashup, the output QueryFilter
property can be bound to the input query
property from either an Advanced or Tree
grid widget. The grid combines all the
query parameters to create a single
output filter that is bound to the specified
service. When the query filter is bound in
both directions like this, filled arrows are
displayed:
If there is no data filter widget and the

QUERY n/a Y Both

Advanced Grid Widgets Extension

 22

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

binding is only in the output direction,
one arrow is filled and the other is
unfilled:

EnableGridReset Allows placement of a toolbar with a grid
Reset button. Click Reset to clear all grid
user settings stored in cookies and return
the grid to its default configuration.

BOOLEAN False N Both

EnableFilterEventOnCo
nfigChange*

Enables and disables event firing when a
configuration is updated from a service.

When this property is enabled and a
bound configuration is changed, a filter
event is fired to update the data as well.
If this property is disabled, the filter
event does not fire when the bound
configuration is updated.

BOOLEAN True N Both

EnableFooter Enables a footer section in the grid.
When you set this property to True, two
additional properties named FooterData
and TableFooterStyle are enabled.

The data in the footer section is bound
using the FooterData property.

For more information, see Footer Section
in Both Advanced Grids.

BOOLEAN False N Both

FooterData Contains the data to be displayed in the
footer of the grid.

INFOTABLE n/a Y Both

GridResetButtonLocati
on

Defines where to place the grid reset
button.

STRING n/a N Both

Advanced Grid Widgets Extension

 23

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

RowFormat Opens a dialog box where optional row-
based rules can be defined to apply
dynamic State Formatting. These row-
based rules can be over ridden by cell-
based state formatting, which is available
from the Configure Grid Columns option
on the grid context menu.

STATE
FORMATTIN
G

State Formatting N Both

TableWrapperStyle Defines the grid background styles. This
adds outline color around the entire table
and sets the background color. Attributes
that are supported are line color, weight
and type, background color, and
alternate background color.

STYLE
DEFINITION

DefaultTableWrapperSt
yle

N Both

TableHeaderStyle Defines the grid header styles. STYLE
DEFINITION

DefaultTableHeaderStyl
e

N Both

FocusStyle Defines the style of a row that has focus
in the grid.

STYLE
DEFINITION

DefaultFocusStyle N Both

RowBackgroundStyle Defines a row background style. This adds
background color, font color, and weight
style. But it does not add line style to
each row.

STYLE
DEFINITION

DefaultRowBackground
Style

N Both

RowAlternateBackgrou
ndStyle

Defines a second row background style
for alternate rows. This adds font color
and weight style, but does not add line
style.

STYLE
DEFINITION

DefaultRowAlternateBa
ckgroundStyle

N Both

RowHoverStyle Defines the style of a row when hovered
over. This adds background color and
font to every cell. Line color, weight and

STYLE
DEFINITION

DefaultRowHoverStyle N Both

Advanced Grid Widgets Extension

 24

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

type is applied around the entire row
which is hovered over only.

RowSelectedStyle Defines the style of a row when selected.
This adds background color and font to
every cell. Line color, weight and type is
applied around the entire row which is
selected only.

STYLE
DEFINITION

DefaultRowSelectedSty
le

N Both

RowBorderStyle Defines the row border styles. This adds
line color, weight and type to horizontal
sides of the cell.

STYLE
DEFINITION

DefaultRowBorderStyle N Both

CellBorderStyle Defines cell border styles. This adds line
color, weight and type to vertical sides of
the cell.

STYLE
DEFINITION

DefaultCellBorderStyle N Both

ToolbarStyle Defines styles for toolbars when
displayed.

STYLE
DEFINITION

DefaultToolbarStyle N Both

TableFooterStyle Defines the style for footer section in the
grid. This includes background color,
border style, and font style.

STYLE
DEFINITION

DefaultGridAdvancedF
ooterStyle

N Both

TooltipStyle Defines styles for tooltips. STYLE
DEFINITION

DefaultTooltipStyle N Both

SortAscendingStyle Defines the style of the sort ascending
icon.

STYLE
DEFINITION

DefaultSortAscendingSt
yle

N Both

SortDescendingStyle Defines the style of the sort descending
icon.

STYLE
DEFINITION

DefaultSortDescending
Style

N Both

CellValidationErrorStyl
e

Defines the style of the cell when a
validation error occurs.

STYLE
DEFINITION

DefaultCellValidationEr
rorStyle

N Both

Advanced Grid Widgets Extension

 25

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

CellValidationErrorTool
tipStyle

Defines the style of the cell tooltip when
a validation error occurs.

STYLE
DEFINITION

DefaultCellValidationEr
rorTooltipStyle

N Both

RowIconStyle Defines the style of the folder icon for
tree nodes.

STYLE
DEFINITION

DefaultRowIconStyle N TreeGrid only

RowExpansionIconStyle Defines the style of the expansion icon
for tree nodes.

STYLE
DEFINITION

DefaultRowExpansionIc
onStyle

N TreeGrid only

RowCollapseIconStyle Defines the style of the collapse icon for
tree nodes.

STYLE
DEFINITION

DefaultRowCollapseIco
nStyle

N TreeGrid only

HeaderOverflow Provides options for handling header cell
text that overflows. Options:

• fitted – Text is fitted to the column
width and subsequently wraps, even in
mid-word.

• wrapped – Text wraps to additional
lines on white space or a dash.

• clipped – Text is cut off at the end of
the header cell.

• ellipsis – Text is cut off but with an
ellipsis (…) to show there is more text.

• tooltip – Text is cut off with an ellipsis
(…) and full text is displayed in a tooltip.

STRING tooltip N Both

DataOverflow Provides options for data cell text that
overflows. The same options are
available as in the HeaderOverflow
property.

STRING clipped N Both

Advanced Grid Widgets Extension

 26

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

MaxHeaderHeight The maximum height (in pixels) the
header row can expand to before vertical
scroll bars appear.

NUMBER 100 N Both

MinRowHeight The minimum height setting (in pixels) for
a row in the grid.

When not using an image renderer for a
column that is showing images that are
larger than the default minimum row
height of 30 pixels, like a state definition
that applies styles containing images,
ensure you enlarge the row height setting
to accommodate the height of the image.

NUMBER 0 N Both

MaxRowCacheSize The maximum number of rows that can
be expanded, client-side, in the grid.
When the limit is reached, a warning is
generated and nodes will need to be
collapsed before additional expansion.

NUMBER 50000 N TreeGrid only

ShowDataLoading* Displays data as it loads. BOOLEAN True N Both

DoubleClicked* A bindable event property fired when the
grid is double-clicked.

EVENT n/a Y Both

Filter* A bindable query property used to bind a
query service as the input query
parameter to control sorting, searching,
and filtering of the data. This property
becomes available when either the
EnableSorting or EnableGridSearch
properties are turned on. It can be set
from the properties panel or from the
context menu on the grid itself.

EVENT n/a Y Both

Advanced Grid Widgets Extension

 27

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

EditCellStarted A bindable event property that can be
triggered when a user begins to edit a cell
value. Only active when the IsEditable
parameter is enabled.

This event can be used to change the
state of other widgets in the mashup on
editing.

EVENT n/a Y Both

EditCellCompleted A bindable event property that can be
triggered when a user edits a cell and
then either clicks Enter, Tab, or anywhere
outside the edited cell. Clicking Esc will
leave the value unedited. When the grid
is refreshed, the edited values will
display.

Two uses for this event include the
following:

• It can be bound to an infotable
update service so that edited values
from the EditedTable infotable are
persisted.

• It can be bound to a service that
enables a Save button widget in the
Mashup. The Save button can, in
turn, be bound to an infotable
update service so that updated
values from the EditedTable
infotable are persisted.

EVENT n/a Y Both

EditStarted This event is triggered when you click the
Edit button in the grid tool bar.

EVENT n/a Y Both

Advanced Grid Widgets Extension

 28

Property Name Description Base Type Default Value Bindable
(Y/N)?

Applicable To
Grid or TreeGrid?

EditCompleted This event is triggered when you click the
Save button in the grid tool bar.

EVENT n/a Y Both

EditCancelled This event is triggered when you click the
Cancel button in the grid tool bar.

EVENT n/a Y Both

Z-index* The ordering for layered widgets. A lower
Z-index will move the grid widget behind
another widget with a higher Z-index.

NUMBER 10 N Both

Visible* If enabled, the grid displays in Run Time.
This property can be defined by a service
bound to the grid. If a visible service is
bound to the grid, a filled arrow is
displayed:

If there is no visible service, the arrow is
unfilled:

BOOLEAN True Y Both

SelectedRowsChanged* A bindable event property that can be
used to trigger another widget or service
when the user selects or deselects one or
more rows in the grid.

To use this event property:

• Set the RowSelection property to single
or multi.

• Bind the SelectedRows property to
another entity (a widget or service).

• Bind the SeletedRowsChanged event to
the other entity so that it will be
triggered when SelectedRows changes.

EVENT n/a Y Both

Advanced Grid Widgets Extension

 29

* When a configuration service is bound to the grid, only the starred properties are displayed in the Properties panel of the Mashup Builder.
All of the other properties are hidden from view because those parameters are passed in from the JSON service.

NOTE: Grid Styles will take precedence over one another in the order listed below, with TableWrapperStyle having the lowest priority, and
RowHoverStyle overriding all others.

1. TableWrapperStyle

2. RowBackground/RowAlternateBackgroundStyle

3. CellBorder/RowBorderStyle

4. FixedRowFormatter/State Definition

5. RowSelectedStyle

6. RowHoverStyle

Footer Section in Both Advanced Grids

You can add a footer section in the Advanced Grid and the Advanced Tree Grid using Mashup Builder properties or JSON configuration. The footer
is configurable and it displays the totals for the data in the columns.

To add a footer, do the following:

1. Select the EnableFooter property to set it to true.

This enables the FooterData and TableFooterStyle properties in the Mashup Builder. You can provide the footer data through a service
that is bound to the FooterData infotable property.

NOTE: If you do not bind the data, a message appears, and the grid will not render.

In a JSON configuration service, the footer property can be set as a top-level parameter as follows:

var config = {

“enableFooter”: false,

...

}

Advanced Grid Widgets Extension

 30

In a JSON configuration service, the footer style can be set in the style section as follows:

var config = {

“tableFooterStyle”:

...

}

The footer data is described in two example services, named GetPartsFooterData and GetWeatherFooterData on the
GridAdvancedExampleServices Thing. The first service is used in the HierarchicalEditablePartsWithFooterExample and the second is used in the
WeatherFooterEXample.

Advanced Grid Widgets Extension

 31

1-Tree Grid example with footer

NOTE: Put the token names in double square brackets in the infotable data to localize them. For example: [[totalUnits]] in the image above.

Advanced Grid Widgets Extension

 32

2- Weather data example with footer

You can find these examples in the sample file GridAdvancedExampleEntities-V4.0.xml. For more information, see Samples File.

Functions that can be Included in the Footer Infotable:

You can also perform client-side calculations in the grid using the following functions in the JSON configuration:

• {#stat_count} – Counts the number of rows.

• {#stat_max} - Calculates the maximum client-side value for the values in the column.

Advanced Grid Widgets Extension

 33

• {#stat_min} - Calculates the minimum client-side value for the values in the column.

• {#stat_average} - Calculates the average client-side value for the values in the column.

• {#stat_total} - Calculates the total client-side value for the values in the column.

• {#cspan} – Span columns.

NOTE: You can perform your own calculations and add them to the footer. For example, the calculation of Cold days in the COLD column in the
image above: Weather data example with footer.

NOTE: You can align data in the footer using #cspan and text alignment settings text-align:left or text-align:right. Use HTML escape
characters for comma in text, and the text following the comma is the alignment setting in the configuration, which is by default text-
align:left.

NOTE: If you are using #cspan elements in columns to span several columns and you move columns, issues may occur at runtime. To ensure that
text and data stay together in the footer when columns are moved, put them together in the same column.

Advanced Grid Widgets Extension

 34

Column Configuration from the Context Menu
If the data source for your grid is tied to a Data Shape, certain column parameters are configurable from
the context menu.

Accessing Parameters on the Context Menu

1. In the Mashup Builder:

 Hover over the menu drop down arrow in the top left corner of the grid, or

 Click the setting icon at the top of the properties panel on the left.

2. Select the Configure Grid Columns option. A Configure Widget dialog box opens.

3. Configure column properties in the following areas of the dialog box:

• Left pane: Reorder the columns by dragging them to different locations in the list. When a
column is selected, the tabs on the right display property settings specific to the selected
column. You can also define which columns can be seen by the end user of the grid:

o Show – Defines whether a specific grid column is initially displayed or hidden from
view. End users can hide and unhide the column display in runtime by right-clicking
the column header and using the context menu. To toggle this property on and off
for all of the listed columns at once, use the Hide All and Show All buttons at the
top of the panel. (This property corresponds to the Hidden property when writing a
configuration service.)

o Exclude – Defines whether a specific grid column can ever be seen by the end user.
When checked, the end user will not see the column and will have no control over
its display. However, data in the excluded column can still be used for state
formatting. (This property corresponds to the inLayout property when writing a
configuration service.)

Advanced Grid Widgets Extension

 35

• Column Format tab: Use this tab to edit the name and description of a specific column and
to control the following column formatting options:

o Auto-Width – Column width auto-adjusts to fit the content of the selected column.

o Width – Column width can be set to a fixed pixel size or to a percentage. At runtime,
after any fixed-width columns are sized, percentage-width columns divide up the
remaining space according to the assigned percentages.

If the total of all the percentage column widths exceeds 100%, each percentage
column width is recalculated based on the specified percentage relative to the total.
For example, if three columns are each assigned a percentage width of 50%, the
calculation for each column width becomes: 50/150 = 33%.

Using percentage widths allows the grid to auto-resize responsively when the
browser size changes.

NOTE: To set individual column widths, the Auto-Width option must be unchecked.

o Cell Alignment / Header Alignment – Alignment of text in column cells and the
column header can be individually set.

o Cell Editing Options – These options allow cell values in a column to be edited in run
time. Click the Editable option for a specific column to enable run time editing. This
option requires that the IsEditable grid parameter is also enabled. (Currently, cell
editing is only available for Boolean fields, so the other options below the Editable
option can be ignored.)

NOTE: When configuring the order of columns in a tree grid, an editable column
cannot be configured as the first column.

See section Cell Editing for more information.

• Column Renderer and State Formatting tab: Use this tab to control how data is rendered in

a column and to configure fixed or state formatting. The tab is divided into two sections:

o The top portion contains the dropdown field to select a type of column Renderer
and a corresponding Format. For more information about column renderers and
their available formats, see Column Renderers and Formats.

o The bottom portion contains options to select Fixed Style or State-based
Formatting. The State formatting set on this tab is cell-based and overrides any row-
based formatting set in the Mashup Builder or via a configuration service.

Advanced Grid Widgets Extension

 36

Cell Editing

Cell editing can be done using the IsEditable and EnableEditButtons properties and the methods
explained below.

NOTE: You can set only one property at a time for cell editing.

• IsEditable property – Cell editing is enabled for all supporting renderers by setting the IsEditable
property to true in the Mashup Builder configuration or through JSON configuration. When you enable
editing, an EditedTable property becomes available to bind the changed rows to a service. If you set
these two properties, the grid will be in edit mode by default and no edit buttons will be available. You
can use your own mashup edit buttons to put the grid in edit mode by binding the click events to a
service, which would enable or disable the edit mode.

When you enable the IsEditable property, the following events are available:

• EditCellStarted Event is triggered when you click on a cell to start editing.

• EditCellCompleted Event is triggered when you edit a cell and press Enter, press the Tab key, or
click outside of the cell.

• EnableEditButtons property – You can enable the EnableEditButtons property instead of the
IsEditable property. If you set this property to true, a set of edit toolbar buttons appear in the grid,
which can be positioned with the EditButtonsLocation drop-down settings to top left or right or
bottom left or right. Now the end user can save the edits by clicking Edit followed by Save or Cancel.

See the images below to find the Edit button at the top right of the infotable.

The following events are available when you enable the edit buttons:

Advanced Grid Widgets Extension

 37

• EditStarted - when you click on the Edit button to start editing.

• EditCompleted - when you click Save button.

• EditCancelled - when you click the Cancel button.

Edits are done per cell by clicking on the cell which will then show the raw unformatted value. A cell editor
appears in which you can make changes. The cell renderer is applied to format the value in its display
format.

NOTE: Press the Esc key to leave the cell unchanged with its original value.

Selection of type of cell editor is done in the Mashup Builder in the Cell Editing Options table in the column
configuration when the column is set to Editable.

Saving Edits

Edits to the grid are saved as follows:

• Auto-save: When you use the IsEditable property and bind EditedRows directly to the
AddOrUpdateProperties service when the EditCellCompleted event is triggered.

• Manual save: When you use the edit buttons in the grid toolbar where the EditedRows are bound
to the AddOrUpdateProperties service. This service is triggered by the EditCompleted event.

NOTE: The events are triggered only when the actual values are changed.

NOTE: If you provide an invalid value for a data type in the cell, the cell value remains unchanged. For
example, if you provide a string value instead of a number value in the cell, the original value will not be
changed.

Adding and Deleting Rows

You can add or delete rows in Advanced Grid using the EnableEditButtons and EnableAddDeleteButtons
properties. If you set the EnableEditButtons property to true, the EnableAddDeleteButtons property
appears in the Mashup Builder configuration. When you set this property to true, Add and Delete buttons
appear in the Grid tool bar enabling you to add or delete rows.

When you enable row addition and deletion, the DeletedTable property also becomes available. Use this
property to bind deleted rows to a service.

NOTE: The Add and Delete buttons are not available at the same time as their operations are separated
to avoid any data corruption or overwriting.

Click Edit button in the tool bar to see Add, Save, and Cancel buttons. Also, a new column with a check
box in each cell appears on the left side of the grid.

For example:

Advanced Grid Widgets Extension

 38

• To add a row:

1. Click Add.

2. A new row appears at the bottom of the grid.

3. Enter the desired values and click Save.

New rows appear only at the bottom of the grid.

Make sure that you enter correct values in the fields, as they are validated.

• To delete a row:

1. Select the check box on the row you want to delete.

2. Click Delete.

After you delete a row, the Edit button reappears in the grid.

For example:

The Cancel button enables you to cancel the addition or deletion and go back to the last operation.

Cell Editing in the JSON configuration – Add the following top-level global property to enable cell
editing in the JSON configuration.

var config = {
“cellEditingEnabled”: true,
“columns”:

Advanced Grid Widgets Extension

 39

...
}

};

Add the following content to any column that needs to be edited.
...
“ColumnFormatter”: {

“type”: “boolean”,
“format”: “notext”,
“cellEditor”: {

“enabled”: true, // *{boolean} to indicate whether cell editing is enable
for this column
},
}
...

Cell Validation

Cell validation is enabled in Advanced Grid and Advanced Tree Grid. Cell validation is essential to avoid
any invalid entry in the grid during editing. Through cell validation, you can display a validation error and
provide an error correction message in a tooltip. You can do this in the Mashup Builder configuration using
either the ValidationErrorCellStyle and ValidationErrorTooltipStyle properties or through JSON.

Validation is available for each renderer type. Depending on the column renderer type, you can specify
the validator in the JSON configuration. The following validators are available for each renderer type:

Renderer Validators
string <None>, NotEmpty, ValidURL
integer <None>, NotEmpty, (ValidInteger is default)
long <None>, NotEmpty, (ValidNumeric is default)
number <None>, NotEmpty, (ValidNumeric is default)
boolean <None>, NotEmpty, (ValidBoolean is default)
location <None>, NotEmpty, (ValidLocation is default)
html <None>, NotEmpty
imagelink <None>, NotEmpty
hyperlink <None>, NotEmpty, ValidURL
datetime <None>, NotEmpty, (ValidDatetime is default)

When a validation fails, the configured error message is displayed in the tooltip for the cell, and the cell
border is outlined in either red or yellow depending upon the type of error.

The validation errors are of two types:

• Blocking error: These are warning errors. For example, the errors in an id column or the errors in an
empty cell that has been configured with the “NotEmpty” validator. You cannot save the edits until
these errors are resolved. These errors are highlighted with a red border by default.

• Non-blocking error: These are not critical. For example, a string value entry in a cell that was configured
for integer. You can save the edits before resolving these errors. These errors are highlighted with a
yellow border by default.

Advanced Grid Widgets Extension

 40

See the following example to see the difference between these errors.

NOTE: Cell validation is important on the primary key column to avoid any server error or exception. The
primary key column is assigned using the IDFieldName property. Usually, it is the id column.

The ValidationErrorCellStyle property enables you to style the cell when a validation error occurs. This
style supersedes any other style that has been configured for a cell.

The ValidationErrorTooltipStyle property enables you to style the tooltip when a validation error occurs.

Cell validation using JSON configuration – A validation error message can be configured in the JSON only.
Also, a validation message can be localized by providing a l8n token in JSON configuration only.

Add the following content to enable cell validation and to define the validation error style and tooltip
style.

"cellEditor": { // optional: defines cell-editing options for this column

 "enabled": true, // *{boolean} to indicate whether cell editing is enable for this column

 "validator": { // optional: when defined will validate input values against the chosen
validator types and error and success messages will be displayed.

 "types": ['NotEmpty'], // {Array} optional: defines list of validator types, e.g. 'NotEmpty', 'ValidURL' or
'Custom'.

 "errorMessage": "[[invalidNumberNotEmpty]]", // *{string} localization token name of the error
message.

 "errorStyle": "cellValidationErrorStyle" // *{string} style definition name of the error message.
}

 }

"cellValidationErrorStyle": {

 "backgroundColor": "",

 "secondaryBackgroundColor": "",

 "foregroundColor": "black",

 "textDecoration": "none",

 "image": "",

Advanced Grid Widgets Extension

 41

 "lineColor": "red",

 "borderStyle": "solid",

 "borderWidth": "1px",

 "fontFamily": ["helvetica", "arial"],

 "fontStyle": "normal",

 "fontSize": "11px",

 "fontWeight": "normal"

 },

 "cellValidationErrorTooltipStyle": {

 "backgroundColor": "red",

 "secondaryBackgroundColor": "",

 "foregroundColor": "white",

 "textDecoration": "none",

 "image": "",

 "lineColor": "white",

 "borderStyle": "solid",

 "borderWidth": "1px",

 "fontFamily": ["helvetica", "arial"],

 "fontStyle": "normal",

 "fontSize": "11px",

 "fontWeight": "normal"

 },

 "tooltipStyle": {

 "backgroundColor": "#0000ff",

 "secondaryBackgroundColor": "",

 "foregroundColor": "#ffffff",

 "textDecoration": "",

 "image": "",

 "lineColor": "",

 "borderStyle": "none",

Advanced Grid Widgets Extension

 42

 "borderWidth": "",

 "fontFamily": ["helvetica", "arial"],

 "fontStyle": "normal",

 "fontSize": "12px",

 "fontWeight": ""

 },

Apply Style Theme

The Advanced Grid and Advanced Tree Grid widgets support custom style theme in a mashup for
ThingWorx 8.4.x and higher versions. You can custom style the grid list in a mashup using this new feature.

NOTE: For information about the style themes feature, see the topic Mashup Builder> Style Themes
(Beta) in the ThingWorx Platform Help Centre.

The steps to apply a sample style theme to a grid mashup are explained in brief here.

1. Create a custom style theme.

a) Click Browse> VISUALIZATION> Style Themes (BETA)> +.

b) A new page is opened. Fill the required details in the General Information tab.

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FWelcome.html

Advanced Grid Widgets Extension

 43

c) In the Styles page, go to Elements> Grids and Lists. You can set the style from the listed
options.

Advanced Grid Widgets Extension

 44

d) For example, set the Main Row Background style as Yellow and Title Row Background style as
Blue.

Advanced Grid Widgets Extension

 45

e) Click Save and save your theme.

2. Select your mashup that has grid.

For example, select WeatherTableEditExample mashup in the example entities.

View the mashup.

Go back to the canvas and click Explorer> Mashup. In the Widget Properties panel, find the
UseThemeForHybrids and StyleTheme properties.

3. Click and select the style theme that you created in Step 1.

Advanced Grid Widgets Extension

 46

4. Select the UseThemeForHybrids property.

5. Click Save to save the mashup.

Advanced Grid Widgets Extension

 47

6. Reload the mashup and see that the new style themes are applied to it.

Advanced Grid Widgets Extension

 48

Column Renderers and Formats

The set of column renderers available for use in the grid widgets is listed below, along with their
corresponding formats and some other notes.

 Renderer Type Formats Notes
Default N/A Renders the data as a string when possible.
Number Select or enter a string containing

the format to be used.
JSON configuration service – formats
support both % and $
Mashup builder – formats only support $.
Both support decimals.

Long Select or enter a string containing
the format to be used.

JSON configuration service – formats
support both % and $
Mashup builder – formats only support $.
Both support decimals.

HTML • raw – The actual HTML is
displayed in the grid cell.

• format – The HTML is encoded,
XSS sanitized, and interpreted by
the browser for display.

• unsanitized – The HTML is
encoded but is NOT XSS sanitized
before it is interpreted by the
browser for display.

The format options listed in the column to
the left are for JSON use. In the Mashup
Builder, these options are labeled:
• Raw (no formatting)
• With Formatting
• With Formatting, Unsanitized (not-

secure)
Important: When using the unsanitized
format, make sure that no user data is
exposed in the grid column. Make sure that
only application data, created by a
developer and free from security
vulnerabilities, is shown.

Hyperlink • _blank – The navigation target is
a new window or browser tab
(depending on the browser).

• _self – The navigation target is
the current window or tab.

• _parent – The navigation target is
the parent of the iframe.

• _top – The navigation target is
the top frame.

When the hyperlink renderer is selected, a
Link Text column is also available. Enter the
text to be displayed by the link.

The following is a JSON example for
configuring a hyperlink column:
“columnFormatter”: {

“type”: “hyperlink”,
“format”: “_blank”,
“params”: {

“textFormat”: “Click here!”
}

}

Imagelink • image – Displays the image at its
actual size.

• scaledtowidth – Scales the image
to fit the column width.

• scaledtoheight – Scaled the
image to fit the row height.

• hyperlink – Displays a link that
can be clicked to view the image.

Advanced Grid Widgets Extension

 49

 Renderer Type Formats Notes
String • full – Displays the entire text

string.
• notext – Displays no text.
• limitN – Limits the display of text

to the first N characters. Limits
are usually unnecessary when
using data overflow options.

Boolean • checkbox – Displays a view-only
checkbox in the grid cell.

• text – Displays text options such
as true or false.

• notext – Displays no data at all.
This option is used for state
formatting only.

Datetime Follow the links on the right for
more information about using the
momentjs and jdate formats.

For more information, see the following:
• http://momentjs.com/docs/
• https://github.com/MadMG/moment-

jdateformatparser

Integer Select or enter a string containing
the format to be used.

JSON configuration service – formats
support both % and $
Mashup builder – formats only support $.
Integer does not support decimals.

Location Select or enter a string containing
the latitude/longitude/elevation
format to be used to identify a
location. The format string can be
used to truncate the precision of
the latitude/longitude/elevation
values. When truncated, the values
will be rounded up. If no elevation
value is included, it will be omitted
from the output string.

An icon can be displayed with the location
by using a state definition. Configure the
state to define when to show the icon,
depending on the value of the location
string.
The following is a JSON example for
configuring a location column:
“columnFormatter”: {

“type”: “location”,
“format”: “0.000000”,
}

}

NOTE: From 4.2.0 version, the Advanced Grid and Advanced Tree Grid list can render and edit Image,
ThingCode, Vec2, Vec3, Vec4, and Infotable basetypes at runtime.

http://momentjs.com/docs/
https://github.com/MadMG/moment-jdateformatparser
https://github.com/MadMG/moment-jdateformatparser

Advanced Grid Widgets Extension

 50

Working with a Configuration Service
To configure grids dynamically, either advanced or tree grids, follow the steps below:

1. In ThingWorx Composer, write a JavaScript configuration service that will output results as a
JSON object. For more information, see Writing a Configuration Service Script.

2. In the Mashup Builder, where you are creating the grid, add the configuration service as another
entity in the right side panel.

3. From the configuration entity in the right panel, under Returned Data/All Data, drag result to
the grid and bind it to the Configuration property.

NOTE: When you bind the configuration service to the grid, most of the properties in the
Mashup Builder panel disappear from view. If the configuration service is unbound, the other
properties will be redisplayed.

4. Save and View the completed mashup.

Writing a Configuration Service Script

The configuration script can be written in any of the following ways:

• Create a new service on a Thing in Composer and write original Javascript. Several tabs are
available with code snippets and other helpful shortcuts.

• Write a Javascript service in any text editor you prefer and copy and paste it into the script
window of a service on a Thing in Composer.

• Modify one of the sample configuration services. To work with sample services, save and import
the sample files from Thingworx marketplace. For more information, see Samples File.

To work with one of the imported sample configuration services in ThingWorx Composer:

1. Navigate to MODELING/Things and open the Thing called GridAdvancedExampleServices.

2. Click Services in the left panel and the available sample services are displayed on the right.

3. Select one of the configuration services and click the Edit icon to view the script window.

4. Click Fullscreen for easier viewing.

5. Modify the script and save it. For more information, see Configuration Service Parameters.

Advanced Grid Widgets Extension

 51

Configuration Service Parameters

The script for a configuration service contains the following sections of parameters:

• Columns – Contains column definitions and some additional properties that define column
behavior in the grid, such as column header and multi-column sort order.

Most of the column definition properties are easy to match with the corresponding properties
available in the Mashup Builder. However, the following column definition properties are only
available in the Mashup Builder when the data source for the grid is tied to a Data Shape. Then
the following properties correspond to similar options in the Configure Grid Columns dialog box:

o hidden – Defines whether a specific grid column is initially visible or hidden from view.
End users can hide and unhide the column display in Run time by right-clicking the
column header and using the context menu. (Corresponds to the Show property in the
Mashup Builder/Configure Grid Columns.)

o inLayout – Defines whether a specific grid column can ever be seen by the end user.
When set to false, the end user will not see the column and will have no control over its
display. However, data in the column can still be used to for state formatting.
(Corresponds to the Exclude property in the Mashup Builder/Configure Grid Columns.)

NOTE: Column header titles in the JSON script can be localized by placing a localization token in
double square brackets, as shown below. At runtime, the tokenized value is translated.

If you use a tokenized header, but the token does not yet exist in ThingWorx, the column header
will display as “???” at runtime. To create or modify tokens in ThingWorx, navigate to SYSTEM ->
Localization Tables and work with the Localization Tokens list in the Default table. To add a
new token to the Default table, you can use the AddLocalizationToken service provided as part
of the GridAdvancedExamplesServices Thing.

• Rows – Contains row properties, such as default row selection, row height, and row-based state
formatting behavior.

• Styles – Contains optional style definitions that control the display of the grid, such as
background colors, border styles, fonts, and state-specific styles.

NOTE: Control of font properties is only available when configuring with a service. Font selection
is not a property available from the Mashup Builder.

• Search – Defines whether global searching is enabled and locates the Search box on the grid.

• resetButton – Defines whether or not the grid reset option is enabled and the location of the
Reset button on the grid.

Advanced Grid Widgets Extension

 52

Working with Tree Grid Data
Using a Tree-Loading Data Service

In a Tree Grid, the relationships between parent and child nodes of data add complexity to querying and
filtering tasks. To simplify the process, most of the functionality is encoded in one JavaScript data
service, a sample of which is provided as an attachment to this document. You can add the provided
JavaScript code to a service, either entirely or in pieces, to support tree grid features in your own
mashups.

When necessary, you can also convert the API implementations described in the sample data service
into a java-based service. Ensure that the input parameter names remain the same and the returned
InfoTable contains the correct listing of rows for each API required in the service.

Binding this data service to your grid is required in order to take full advantage of tree grid functionality,
such as:

• Loading initial child data, with optional query and data filter parameters.

• Auto-expanding rows according to a specified expansion path (leafID).

• Searching for child data that matches specified query parameters.

• Using a data filter widget to filter for child data that matches specified filter query parameters.

To use the provided GetPartsData sample tree-loading data service, it must be slightly customized (to
point to the location of your data), added to a Thing in Composer, and bound to the grid. Follow these
steps:

1. Use the information in the Samples File section to save the samples and import them into
ThingWorx Composer.

2. The sample data service for tree grid functionality is called GetPartsData. To find it:

• Navigate to MODELING/Things and open the GridAdvancedExampleServices Thing.

• Click Services in the left panel and the available sample services are displayed.

• Select the GetPartsData service and click the Edit icon to view the script window.

• Click Fullscreen for easier viewing.

3. In the section of the script called Your Data Store, customize the getEntriesFromDataStore
function so that it points to the location of your child data source (see the figure below).

• If the source is a data table, only update the name of the table in the
YOUR_DATATABLE_THING variable.

• If the source is a data stream, a data shape, or a third party platform, update the
getEntriesFromDataStore function accordingly.

Advanced Grid Widgets Extension

 53

4. In the rows section of the script, make sure the parentId value is ‘/’ for any top-level row that
does not have a parent row. This value indicates root level and is necessary to ensure that the
GetPartsData service can properly sort and search your data.

If you prefer to use a different value to indicate root level, modify the ROOT_ID_VALUE
parameter at the top of the script. You can use any non-empty string, such as: ‘/Root’, ‘//’, or a
single space ‘ ‘.

5. Save your changes. You can now use the service as is or copy and paste the script to a service on
your own Thing in Composer.

6. In the Mashup Builder, where you are creating the tree grid, add the data service as another
entity in the right-side panel.

7. From the data service entity in the right panel, under Returned Data, drag All Data to the grid
and bind it to the Data or ChildData property. Data and Child Data can be connected to the
same or different sources.

8. Bind the Filter and the Filter Query properties to the data service so that all of the sort, search,
and filter parameters can be combined and appropriate results can be output.

9. Save and View the completed mashup.

Tree Grid Performance Guidelines

The tree grid widget is designed to support two separate use cases. Before building your own tree grid,
consider which of the following scenarios your situation falls into:

• Use Case 1: a grid with a fixed amount of data, including 5 or less tree levels and fewer than
1000 total rows of data

• Use Case 2: a grid with a growing amount of data, including 5 to 25 tree levels and anywhere
from 1000 to 100K total rows of data

Advanced Grid Widgets Extension

 54

Based on these aspects of the depth and size of your data, the use of specific grid features can affect the
performance of your grid. In other words, the set of tree grid features that are practical to use will differ
depending on the depth and size of your data.

The chart below shows how specific grid features should be used in each use case scenario. As a Mashup
developer, determine in advance whether the number of rows in your grid will remain fixed or will grow
over time. If the number of rows will remain fixed, you can use any or all of the features listed as
supported in the Use Case 1 column. Otherwise, always opt for Use Case 2 and limit your use of grid
features accordingly.

Grid Feature Use Case 1 – fixed # of rows Use Case 2 – growing # of rows
Total Rows < 1000 > 1000 and < 100K
Tree Levels < = 5 > 5 and < 25
Preload Levels (maxLevels) Supported Supported for 1 or 2 levels
Dynamically Load Nodes Supported Must use a dynamic child data-

loading service.
Server-side Sorting Supported Supported
Server-side Searching Supports matched rows and

parents
Supported for matched rows only, no
parents

Server-side Data Filtering Supported for matched rows
and parents

Supported for matched rows only, no
parents

Expand All Rows Supported Only for client-side preloaded levels
Preserver Row Expansion Supported Only for client-side preloaded levels
Default Selected Rows Supported Only for client-side preloaded levels
Expand Nodes Supported (any level) Only for client-side preloaded levels
Selected Rows Supported (any level) Only for client-side preloaded levels
Include Row Expansion Parents Supported Not Supported

Row Selection of Dynamically-Loaded Rows

To expand and select rows in a Tree Grid that have not been loaded on the client yet, provide an infotable
with at least an id column indicated by the IDFieldName property that contains the fully-qualified path of
row IDs to the selected row. By default, the :; character combination is used as the path separator, but
you can change it by setting the IDPathSeparator property in Mashup Builder or in the JSON config file.

For example to select a row with ID ddd you will have to create an infotable with a column with ID value:
//aaa:;bbb:;ccc:;ddd.

If you want the Tree Grid to generate an output selected rows infotable with fully-qualified ID paths, set
the IncludeRowExpansionParents property to true, otherwise it will only use the single leaf ID. When the
selected rows infotable is sent to the grid and a listed row has not been loaded yet by the grid, the Tree
Grid automatically generates a request to the bound data service. If the IncludeRowExpansionParents
property is enabled, the following parameters are included:

{id: 'aaa', leafId: 'ddd', maxLevels: 25}

Advanced Grid Widgets Extension

 55

The grid is requesting all rows from ID aaa to its leaf node ddd to fully create the expanded path to the
row with ID ddd.

In JSON configuration, add the following:

"treeSettings":
{ // Required for Tree Grid.
“IncludeRowExpansionParents”:true, //{boolean} Fetch parent rows of expanded or
selected rows that are not pre-loaded.
 "IDPathSeparator": ':;' // {string} The ID path separator that is used in ID
paths for the selection of non-loaded rows.
}
For more information about the settings, see the RowSelection example in the
GridAdvancedExampleEntities-V4.0.xml. In this example, we are binding an infotable with full path row
selections to the right tree grid from the left grid. Therefore, the left grid needs to generate a selected
row infotable with fully-qualified paths and not just the leaf ID. To do this, you must set the
IncludeRowExpansionParents property. Or, you can create a service that generates an infotable with
fully-qualified paths to the rows you want to select. The path separator character is configurable by the
IDPathSeparator property. By default, we use :; but you can change it to anything else. In the row
selection example, you have to change the setting in both tree grids to match.

Advanced Grid Widgets Extension

 56

Sorting, Searching, and Filtering in Advanced Grid and Tree Grid
Sorting, searching, and filtering your grid data can all be handled through a standard platform query
service with a single Filter event and a QueryFilter parameter. When the Filter event is triggered,
whether to sort, search, or filter the grid data, the QueryFilter parameter ensures that the returned data
meets all of the specified conditions.

Ways to query your data for sorting, searching, and filtering:

• Set up a Data Table that contains your data and access it using the standard Platform
QueryDataTableEntries API.

• If generating data dynamically, through a data service, use the Query InfoTable function to sort
and search data in an InfoTable.

For more information about query parameters, see the Query Parameter for Query Services section of
the ThingWorx Help Center.

Implement Sorting

1. Set the EnableSorting property to true, either by clicking it in the properties panel of the
Mashup Builder or defining it in the JSON script of a dynamic configuration service. The
QueryFilter property and Filter event will become available in the properties panel.

2. Bind the QueryFilter property to the output query parameter where the data to be sorted is
located:

• If your data is in a table, bind the QueryFilter to the query parameter of the
QueryDataTableEntries service.

• If you are generating data via a data service, bind the QueryFilter to the queryFilter
parameter of the data service.

3. Bind the Filter event to the service that will be triggered when sorting begins:

• If you are using a data table, bind the Filter event to QueryDataTableEntries service.

• If you are generating data via a data service, bind the Filter event to the data service.

The example below shows a query parameter with two sort columns applied (name and title):

{"maxItems":100000,"query":{"sorts":[{"fieldName":"name","isAscending":true},{"fieldName":
"title","isAscending":true}]}}

When these binding steps are complete, the Connections panel should look like the following:

https://support.ptc.com/help/thingworx_hc/thingworx_7_hc/#page/ThingWorx%2FThingWorxHelpCenterDITAFiles%2FThingWorxModelDefinitionandComposer%2FThings%2FThingServices%2FQueryParameterforQueryServices.html%23

Advanced Grid Widgets Extension

 57

Implement Searching

Searching provides the ability to find a string value in any column in a grid.

1. Set the EnableGridSearch property to true, either by clicking it in the properties panel of the
Mashup Builder or defining it in the JSON script of a dynamic configuration service. The
GridSearchLocation property, the QueryFilter property, and Filter event all become available in
the properties panel.

2. Use the GridSearchLocation property, either in the Mashup Builder properties panel or in a
JSON script, to configure a location for the Search field in the grid. Available options include: top
right, top left, bottom right, and bottom left.

3. Bind the QueryFilter property to the output query parameter where the data to be searched is
located:

• If your data is in a table, bind the QueryFilter to the query parameter of the
QueryDataTableEntries service.

• If you are generating data via a data service, bind the QueryFilter to the queryFilter
parameter of the data service.

4. Bind the Filter event to the service that will be triggered when searching begins:

• If you are using a data table, bind the Filter event to QueryDataTableEntries service.

• If you are generating data via a data service, bind the Filter event to the data service.

The following example shows a search query that searches for an event called Rain in all columns:

{"maxItems":100000,"query":{"filters":{"type":"OR","filters":[{"fieldName":"id","type":"LI
KE","value":"%Rain%"},{"fieldName":"date","type":"LIKE","value":"%Rain%"},{"fieldName":"ma
x_temp","type":"LIKE","value":"%Rain%"},{"fieldName":"min_temp","type":"LIKE","value":"%Ra
in%"},{"fieldName":"cold","type":"LIKE","value":"%Rain%"},{"fieldName":"visibility","type"
:"LIKE","value":"%Rain%"},{"fieldName":"wind","type":"LIKE","value":"%Rain%"},{"fieldName"
:"precipitation","type":"LIKE","value":"%Rain%"},{"fieldName":"events","type":"LIKE","valu
e":"%Rain%"},{"fieldName":"image","type":"LIKE","value":"%Rain%"},{"fieldName":"key","type
":"LIKE","value":"%Rain%"},{"fieldName":"location","type":"LIKE","value":"%Rain%"},{"field
Name":"source","type":"LIKE","value":"%Rain%"},{"fieldName":"sourceType","type":"LIKE","va
lue":"%Rain%"},{"fieldName":"tags","type":"LIKE","value":"%Rain%"},{"fieldName":"timestamp
","type":"LIKE","value":"%Rain%"}]}}}

Implement Filtering

To implement filtering in a grid, a Data Filter widget can be added to the Mashup where you are building
the grid. A Data Filter widget can only be added to a grid that is bound to a data table based on an
underlying Data Shape.

1. From the Widgets tab on the left side of the Mashup Builder (above the properties panel), select
the Data Filter widget and drag it into your mashup.

Advanced Grid Widgets Extension

 58

2. Bind the output query parameter of the Data Filter widget to the QueryFilter property of the
Advanced Grid. In this scenario, the QueryFilter property is serving both an input and an output
function. It receives input from the Data Filter, which is automatically combined with any sorting
and searching input that is enabled, and generates a single output for the query parameter.

3. Bind the QueryFilter property to the query parameter of the QueryDataTableEntries service of
the data table being filtered, sorted, or searched.

The following example shows a Data Filter query with a single filter parameter, an event value of Rain:

{"maxItems":100000,"query":{"filters":{"fieldName":"events","type":"LIKE","value":"Rain*"}
}}

A filter query can become much more complex when multiple filters are applied, or when filter input is
combined with search and sort parameters. The following example shows a combination of sort, search,
and filter parameters in a single output query:

{"maxItems":100000,"query":{"sorts":[{"fieldName":"id","isAscending":true},{"fieldName":"m
in_temp","isAscending":true}],"filters":{"type":"And","filters":[{"type":"And","filters":[
{"fieldName":"events","type":"LIKE","value":"Rain*"},{"fieldName":"cold","type":"EQ","valu
e":false}]},{"type":"OR","filters":[{"fieldName":"id","type":"LIKE","value":"%21%"},{"fiel
dName":"date","type":"LIKE","value":"%21%"},{"fieldName":"max_temp","type":"LIKE","value":
"%21%"},{"fieldName":"min_temp","type":"LIKE","value":"%21%"},{"fieldName":"cold","type":"
LIKE","value":"%21%"},{"fieldName":"visibility","type":"LIKE","value":"%21%"},{"fieldName"
:"wind","type":"LIKE","value":"%21%"},{"fieldName":"precipitation","type":"LIKE","value":"
%21%"},{"fieldName":"events","type":"LIKE","value":"%21%"},{"fieldName":"image","type":"LI
KE","value":"%21%"}]}]}}

In the advanced grid, when filtering is in use along with sorting and/or searching, the bindings should
look like the following diagram when complete:

Advanced Grid Widgets Extension

 59

Samples File
The sample data and configuration entities are provided as a link in the ThingWorx Marketplace and it
can be downloaded by the user. To use the samples, follow the steps below to find the samples file and
import it into the ThingWorx Composer.

1. Search and find the link for GridAdvancedExampleEntities-V4.0.xml from the ThingWorx
Marketplace.

2. Click to download and save the example file to your local directory/to a location you can find when
you need to import it into Composer.

3. Open ThingWorx Composer.
4. From the Import menu at the top of the

Composer screen, select From a File. The
Import From File dialog box opens.

5. Click Choose File and navigate to the saved
example file and select it.

6. Click the Import button on the dialog box.
The entities in the file are imported to
Composer.

7. When the file import is complete, the entities listed below will be available for you to use in
Composer and the Mashup Builder.

• A Thing called GridAdvancedExampleServices that contains both data and configuration
services for a set of sample employee data, a set of sample weather data, and a set of sample
hierarchical parts data

• Several Data Shapes (which are tied to services in the GridAdvancedExampleServices Thing)

• Several sample Mashups that include advanced grids or tree grids, all built with the sample data
services and some configured with the sample configuration services

To view a sample configuration service in Composer:

1. Navigate to MODELING/Things and open the GridAdvancedExampleServices Thing.

2. Click Services in the left panel and the available sample services are displayed on the right.

3. Select one of the configuration services and click the Edit icon to view the script window.

Using the Advanced and Tree Grids in Run Time
The Advanced Grid and Advanced Tree Grid both include several responsive behaviors that are available
to end users in Run time:

• Hide/Unhide Columns – Right click in the column header row to display a context menu listing
all the columns in the grid. Click to hide or unhide specific columns.

Advanced Grid Widgets Extension

 60

• Multiple Column Sort – To sort by multiple columns, click the first column you want to sort on,
hold down the Control key on your keyboard and click additional columns to sort them in either
descending or ascending order. To start over, release the Control key and click on a column. The
multiple-column sort order will be released.

• Resize Column Width – To resize the width of a specific column, hover over the column border
until your cursor changes to a double-sided arrow. Then click and drag the column border to
whatever width you want.

NOTE: You can set the column width to less than 20px during design time. However, at runtime
when the end-user resizes the column, it cannot be sized to less than 20px to avoid making the
column too small accidentally which could prevent it to be able to be resized altogether.

Advanced Grid Widgets Extension

 61

Release Notes for Advanced Grids
Enhancements

• EXT- 1251 – The Advanced Grid widget supports theming feature. You can use custom style
themes to style your mashup. Theming is enabled in ThingWorx 8.4.x versions.

• EXT-1252 – The Advanced Tree Grid widget supports theming feature. You can use custom style
themes to style your mashup. Theming is enabled in ThingWorx 8.4.x versions.

• EXT-1164 – Added rendering and edit support for the Image basetype at runtime.

• EXT-1053 – Added rendering and edit support for the ThingCode basetype at runtime.

• EXT-1039 – Added rendering and edit support for the Vec4 basetype at runtime.

• EXT-1038 – Added rendering and edit support for the Vec3 basetype at runtime.

• EXT-1035 – Added rendering and edit support for the Vec2 basetype at runtime.

• EXT-1004 – Added rendering and edit support for the Infotable basetype at runtime.

Fixed Issues

• EXT-1098 – Fixed an issue in the Advanced Grid that caused an unwanted movement of the
scrollbar when the grid is refreshed.

Known Issues

• EXT- 1337 – The user cannot apply Selected Background and Hover Background theming styles
with RowFormat style in both Advanced Grid and Advanced Tree Grid widgets. This issue exists
only for ThingWorx 8.4.x version and will be fixed in a future release.

• EXT-1282 – In an IE11 browser, when you resize a column in the grid, the resize control is not
released, and it behaves in an undesired manner. The issue is caused by the webcomponet-lite
library used by both Grid extensions. This issue exists only for ThingWorx 8.4.x version and will be
fixed in a future release.

• TWX-53316 – In an IE11 browser, the cell validation and row addition features in the Advanced
Grid are not working because the cells are not editable. You can only delete rows. This issue exists
only for ThingWorx 8.4.x version and will be fixed in a future release.

• TW-20818 – In a Chrome browser, when a grid contains many rows, blank rows might appear
during fast scrolling. This issue is caused by the DPI setting changes Chrome introduced in version
54. To prevent the issue, make sure the Microsoft Windows Display setting on your computer,
and the Zoom Level setting in your Chrome browser are both set to 100%.

• TW-19529 – In a Chrome browser, header cells become slightly offset from data cells.

Root Cause and Work-around: The Chrome 54 update introduced some minor modifications to
Google’s browser. Google Chrome now automatically detects your DPI (Dots Per Inch) settings.

Advanced Grid Widgets Extension

 62

This change has scaled up the Chrome user interface so that it can appear more zoomed in for
users whose Windows DPI settings are above 100%. Slight miscalculations in the grid row height
and column width can occur, introducing white space at the top of the grid or slight misalignment
between header and grid cells. To resolve the issue, you can do either of the following:

o Change your Windows Display settings for text size from Medium (125%) or Large to
Smaller (for example, 100%).

o Change your zoom level to less than 100% in your Chrome browser by using the Ctrl-Shift
minus keys.

	Document Revision History
	Software Change Log
	Prerequisites
	Introduction
	How are the Advanced Grid and Advanced Tree Grid Widgets Different from the Standard Grid?
	Key Features in Both Advanced Grids
	Features Unique to the Tree Grid
	Features of the Standard Grid Not Currently Available in Advanced Grids

	Installing the Widgets
	Building an Advanced or Tree Grids
	Properties
	Footer Section in Both Advanced Grids
	Functions that can be Included in the Footer Infotable:

	Column Configuration from the Context Menu
	Accessing Parameters on the Context Menu
	Cell Editing
	Saving Edits
	Adding and Deleting Rows

	Cell Validation
	Apply Style Theme
	Column Renderers and Formats

	Working with a Configuration Service
	Writing a Configuration Service Script
	Configuration Service Parameters

	Working with Tree Grid Data
	Using a Tree-Loading Data Service
	Tree Grid Performance Guidelines
	Row Selection of Dynamically-Loaded Rows

	Sorting, Searching, and Filtering in Advanced Grid and Tree Grid
	Implement Sorting
	Implement Searching
	Implement Filtering

	Samples File
	Using the Advanced and Tree Grids in Run Time
	Release Notes for Advanced Grids
	Enhancements
	Fixed Issues
	Known Issues

